Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs.

نویسندگان

  • E R Liman
  • J Tytgat
  • P Hess
چکیده

The subunit stoichiometry of the mammalian K+ channel KV1.1 (RCK1) was examined by linking together the coding sequences of 2-5 K+ channel subunits in a single open reading frame and tagging the expression of individual subunits with a mutation (Y379K or Y379R) that altered the sensitivity of the channel to block by external tetraethylammonium ion. Two lines of evidence argue that these constructs lead to K+ channel expression only through the formation of functional tetramers. First, currents expressed by tetrameric constructs containing a single mutant subunit have a sensitivity to tetraethylammonium that is well fitted by a single site binding isotherm. Second, a mutant subunit (Y379K) that expresses only as part of a heteromultimer contributes to the expression of functional channels when coexpressed with a trimeric construct but not a tetrameric construct.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subunit stoichiometry of a heteromultimeric G protein-coupled inward-rectifier K+ channel.

We investigated the stoichiometry of the heteromultimeric G protein-coupled inward-recitfier K+ channel (GIRK) formed from GIRK1 and GIRK4 subunits. Multimeric GIRK constructs with several concatenated channel subunits were expressed in Xenopus oocytes. Coexpression of various trimeric constructs with different monomers clearly showed that the functional channel has stoichiometry (GIRK1)2(GIRK4...

متن کامل

Subunit Stoichiometry of Human Muscle Chloride Channels

Voltage-gated Cl- channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl- channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gr...

متن کامل

Subunit Stoichiometry of Cyclic Nucleotide-Gated Channels and Effects of Subunit Order on Channel Function

Cyclic nucleotide-gated (CNG) ion channels are multimeric structures containing at least two subunits. However, the total number of subunits per functional channel is unknown. To determine the subunit stoichiometry of CNG ion channels, we have coexpressed the 30 pS conductance bovine retinal channel (RET) with an 85 pS conductance chimeric retinal channel containing the catfish olfactory channe...

متن کامل

Contribution of individual subunits to the multimeric P2X(2) receptor: estimates based on methanethiosulfonate block at T336C.

P2X receptors are membrane proteins that incorporate a cation-selective ion channel that can be opened by the binding of extracellular ATP. They associate as hetero- and homo-multimers of currently unknown stoichiometry. In this study, we have used Xenopus laevis oocytes to express rat P2X(2) receptor subunits, which carry a cysteine mutation at position 336. ATP-induced currents at this mutant...

متن کامل

Determination of Epithelial Na+ Channel Subunit Stoichiometry from Single-Channel Conductances

The epithelial Na(+) channel (ENaC) is a multimeric membrane protein consisting of three subunits, alpha, beta, and gamma. The total number of subunits per functional channel complex has been described variously to follow either a tetrameric arrangement of 2alpha:1beta:1gamma or a higher-ordered stoichiometry of 3alpha:3beta:3gamma. Therefore, while it is clear that all three ENaC subunits are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 1992